Искусственный интеллект повышает точность товарных рекомендаций в сети аптек «ВЕК ЖИВИ»
Компания «Инфосистемы Джет» разработала для сети аптек «ВЕК ЖИВИ» систему на базе алгоритмов Machine Learning (ML) для товарных рекомендаций на кассе. Решение позволяет аптечной сети давать более адресные рекомендации покупателям и повышать средний чек.
15 октября 2018 г., Москва — Компания «Инфосистемы Джет» разработала для сети аптек «ВЕК ЖИВИ» систему на базе алгоритмов Machine Learning (ML) для товарных рекомендаций на кассе. Решение позволяет аптечной сети давать более адресные рекомендации покупателям и повышать средний чек.
—
Разработанный сервис получает данные о покупках клиента, анализирует их с помощью модели машинного обучения и отправляет сотруднику на кассе перечень рекомендуемых товаров. В него входят ТОП-3 лекарственных средства, которые клиент с высокой вероятностью добавит к своим покупкам при предоставлении квалифицированной рекомендации. Сервис предлагает конкретные товарные позиции с точностью до артикула (SKU), выбирая их из 27 тысяч наименований медикаментов и парафармацевтической продукции. Автоматизированные рекомендации призваны помочь в организации дополнительных продаж без создания существенной нагрузки на сотрудников аптечной сети. Всю работу по определению наиболее интересных для каждого отдельного покупателя товаров берет на себя программное решение.
Автоматизированный ML-инструмент помогает, с одной стороны, выявлять скрытые потребности клиентов, а с другой — предоставлять им полезные и достаточно точные рекомендации по индивидуальному списку приобретенных медикаментов. Задача данного решения: увеличение среднего чека за счёт адресных, нужных покупателю, предложений
Для составления индивидуальных прогнозов специалисты «Инфосистемы Джет» использовали целый комплекс методов машинного обучения. Математическая модель сервиса прошла обучение на данных из чекового хранилища компании за длительный период. Сюда входили структура чека, список приобретенных товаров и цены по каждой позиции. Решению открыли доступ и к информации о каталоге медикаментов с разбивкой на отдельные категории лекарственных средств. На основе анализа обширного пула ранее совершенных покупок ML-алгоритмы способны с достаточно высокой точностью рекомендовать дополнительные предложения по каждому чеку, проходящему через систему.
«В этом проекте мы видим, как возможности машинного обучения органично дополняют взаимодействие между людьми. Сотрудники аптеки получают удобную рекомендательную систему, которая, обработав огромные массивы данных, подсказывает по-настоящему полезные для покупателя персональные предложения. В итоге в выигрыше оказываются обе стороны», – отмечает Владимир Молодых, директор по разработке и внедрению компании «Инфосистемы Джет».
Подобные рекомендательные системы могут широко применяться в ритейле, в том числе в торговых сетях и интернет-магазинах. На текущий момент компания «Инфосистемы Джет» реализовала более 50 проектов с применением технологий Machine Learning в банках, ритейле, промышленности, страховании и других отраслях.
Подробнее об этом и других ML-кейсах вы можете узнать на Российском AI-форуме – RAIF.
—
Разработанный сервис получает данные о покупках клиента, анализирует их с помощью модели машинного обучения и отправляет сотруднику на кассе перечень рекомендуемых товаров. В него входят ТОП-3 лекарственных средства, которые клиент с высокой вероятностью добавит к своим покупкам при предоставлении квалифицированной рекомендации. Сервис предлагает конкретные товарные позиции с точностью до артикула (SKU), выбирая их из 27 тысяч наименований медикаментов и парафармацевтической продукции. Автоматизированные рекомендации призваны помочь в организации дополнительных продаж без создания существенной нагрузки на сотрудников аптечной сети. Всю работу по определению наиболее интересных для каждого отдельного покупателя товаров берет на себя программное решение.
Автоматизированный ML-инструмент помогает, с одной стороны, выявлять скрытые потребности клиентов, а с другой — предоставлять им полезные и достаточно точные рекомендации по индивидуальному списку приобретенных медикаментов. Задача данного решения: увеличение среднего чека за счёт адресных, нужных покупателю, предложений
Для составления индивидуальных прогнозов специалисты «Инфосистемы Джет» использовали целый комплекс методов машинного обучения. Математическая модель сервиса прошла обучение на данных из чекового хранилища компании за длительный период. Сюда входили структура чека, список приобретенных товаров и цены по каждой позиции. Решению открыли доступ и к информации о каталоге медикаментов с разбивкой на отдельные категории лекарственных средств. На основе анализа обширного пула ранее совершенных покупок ML-алгоритмы способны с достаточно высокой точностью рекомендовать дополнительные предложения по каждому чеку, проходящему через систему.
«В этом проекте мы видим, как возможности машинного обучения органично дополняют взаимодействие между людьми. Сотрудники аптеки получают удобную рекомендательную систему, которая, обработав огромные массивы данных, подсказывает по-настоящему полезные для покупателя персональные предложения. В итоге в выигрыше оказываются обе стороны», – отмечает Владимир Молодых, директор по разработке и внедрению компании «Инфосистемы Джет».
Подобные рекомендательные системы могут широко применяться в ритейле, в том числе в торговых сетях и интернет-магазинах. На текущий момент компания «Инфосистемы Джет» реализовала более 50 проектов с применением технологий Machine Learning в банках, ритейле, промышленности, страховании и других отраслях.
Подробнее об этом и других ML-кейсах вы можете узнать на Российском AI-форуме – RAIF.
Источник:
https://aladdin-rd.ru